

Journal of Organometallic Chemistry 559 (1998) 209-213

Preliminary communication

Zur Elektronenstruktur metallorganischer Komplexe der f-Elemente XLVI (COT)Ln^{III}(I)(THF)₃-Komplexe–Modellverbindungen für die experimentelle Aufklärung der Elektronenstrukturen von Halbsandwich-Komplexen der Stöchiometrie (COT)An^{IV}(I)₂(THF)₂

Hanns-Dieter Amberger^{a,*}, Stefan Jank^a, Frank T. Edelmann^b

^a Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany ^b Chemisches Institut, Otto-von-Guericke-Universität, Universitätsplatz 2, 39106, Magdeburg, Germany

Eingegangen am 3 Dezember 1997

Abstract

The absorption spectra of (COT)Ln^{III}(I)(THF)₃ (Ln = Pr, Nd, Sm) have been determined at ambient and low temperatures. The spectra obtained are nearly identical with those of (COT)Ln[HB(3,5-Me₂pz)₃], where the f electrons experience essentially a crystal field (CF) associated with the COT ligand. Preliminary optical investigations exhibit that this holds also for (COT)U^{IV}(I)₂(THF)₂. Making use of the previously derived phenomenological CF parameters representative for both (COT)Pr[HB(3,5-Me₂pz)₃] and (COT)Pr(I)(THF)₃ and thus for [Pr(COT)]⁺ a starting set of CF parameters is suggested for the analysis of the absorption spectrum of (COT)U(I)₂(THF)₂. In order to check this set two recently communicated 'relativistic' CF splitting patterns of Pa(COT)₂ were analyzed on the basis of phenomenological CF theory. Like in the case of [Ln(COT)]⁺ dominant negative CF parameters B_0^4 were obtained.

Keywords: Lanthanides; Actinides; Cyclooctatetraenyl ligand; Optical spectra; Crystal field parameters

Zusammenfassung

Die Absorptionspektren von (COT)Ln^{III}(I)(THF)₃ (Ln = Pr, Nd, Sm) wurden bei Raumtemperatur und bei tiefen Temperaturen aufgenommen. Die erhaltenen Spektren sind nahezu identisch mit denen von (COT)Ln[HB(3,5-Me₂pz)₃], wo die f-Elektronen im wesentlichen einem Kristallfeld (KF) ausgesetzt sind, das durch den COT-Liganden hervorgerufen wird. Erste optische Untersuchungen zeigen, daß das auch für (COT)U^{IV}(I)₂(THF)₂ zutrifft. Auf der Grundlage der früher bestimmten phänomenologischen KF-Parameter, die sowohl für (COT)Pr[HB(3,5-Me₂pz)₃] und (COT)Pr(I)(THF)₃ und damit für [Pr(COT)]⁺ re-präsentativ sind, wird ein Satz von KF-Parameter für die Analyse des absorptionsspektrums von (COT)U(I)₂(THF)₂ vorgeschlagen. Um die Korrektheit dieses Satzes zu überprüfen wurden zwei kürzlich mitgeteilte 'relativistische' KF-Aufspaltungsmuster von Pa(COT)₂ auf der Grundlage der phänomenologischen KF-Theorie analysiert. Ähnlich wie im Falle von [Ln(COT)]⁺ wurden jeweils dominante negative KF-Parameter B_0^4 erhalten. © 1998 Elsevier Science S.A. All rights reserved.

* Corresponding author.

1. Einführung

Die von Fischer bereits fünf Jahre vor der Erstdarstellung [1] vorhergesagten sandwichartigen $Bis(n^{8}$ cyclooctatetraenyl)-Komplexe der Actiniden(IV) $(An^{IV}(COT)_2)$ [2], der Lanthaniden(IV) $(Ln^{IV}(COT)_2)$ sowie deren Anionen ([Ln^{III}(COT)₂]⁻) waren insbesondere während der letzten Jahre Gegenstand zahlreicher Modellrechnungen mit dem Ziel, die Elektronenstrukturen dieser Verbindungsklassen aufzuklären [3-15]. Eine nähere experimentelle Überprüfung dieser Voraussagen war bislang nicht möglich, da die Achtzähligkeit der beiden COT-Ringe den f-Elektronen einen Doppelring und damit ein Inversionszentrum vortäuscht [16], so daß die hier interessierenden f-f-Übergänge streng Laporte-verboten sind.

Kürzlich konnten wir anhand der Verbindungsklasse [Ln(COT)₂]⁻ zeigen, daß die Ersetzung eines der beiden COT-Ringe durch einen sterisch anspruchsvollen zwei- oder dreizähligen Liganden L- wie z.B. $[(C_6H_5)C(NSiMe_3)_2]^-,$ $[(C_6H_5)_2P(NSiMe_3)_2]^-,$ $[HBpz_3]^- (pz = Pyrazol-1-yl), [HB(3,5-Me_2pz)_3]^- zu$ ausreichend löslichen Neutralkomplexen der Stöchiometrien (COT)LnL oder (COT)Ln(L) \cdot (THF) führt, deren optische Spektren deutliche Signale von f-f-Charakter aufweisen [17-20]. Ist zudem mit dem Liganden L⁻ eine zu vernachlässigende Ligandenfeldstärke verbunden (wie im Falle von [HBpz₃]⁻ [21] oder [HB(3,5-Me₂pz)₃]⁻), dann können anhand der optischen Spektren des betreffenden (COT)LnL-Komplexes die vom COT-Liganden bewirkten KF-Aufspaltungseffekte der 4f-Elektronen in idealer Weise studiert werden [17-20]. Um die noch interessantere Wechselwirkung zwischen 5f-Elektronen und dem COT-Ring experimentell zu erfassen, bietet sich im Prinzip die optische Untersuchung des noch nicht beschriebenen Halbsandwich-Komplexes (COT)U^{IV}(HBpz₃)₂ an. Dieses Vorhaben scheiterte bislang jedoch an der Synthese dieser mutmaßlich sterisch überfrachteten Verbindung.

Es ist deshalb das Ziel der vorliegenden Arbeit, (COT)Ln^{III}L-Komplexe (bzw. deren THF-Addukte) aufzufinden, bei denen nicht nur L⁻ (bzw. L⁻ zusammen mit den zur sterischen Absättigung erforderlichen THF-Molekülen) eine weitgehend zu vernachlässigende Ligandenfeldstärke besitzt, sondern zudem die entsprechende (möglicherweise THF-haltige) Verbindung (COT)U^{IV}L₂ existiert.

2. Experimentelles

Vorschriften hergestellt worden. Die uns zur Verfügung gestellten Proben wurden vor den optischen Messungen zweimal umkristallisiert. Im Falle THF-freier Verbindungen wurden dabei das Lösungsmittelgemisch Toluol/Methylcyclohexan (im Verhältnis 2:1) und bei THF-haltigen Komplexen das Gemisch Toluol/Methylcylohexan/THF (im Verhältnis 2:1:1) verwendet.

Über nähere Einzelheiten der optischen Messungen berichteten wir bereits in Lit. [18].

3. Ergebnisse

3.1. Optische Untersuchungen

Unser primäres Ziel, neben den Gruppen $L^- = [HBpz_3]^-$, $[HB(3,5-Me_2pz)_3]^-$ weitere Liganden $L^$ aufzufinden, die—verglichen mit dem COT-Ring—eine geringfügige Ligandenfeldstärke aufweisen, läßt sich am einfachsten dadurch erreichen, daß die optischen Spektren diverser (COT)LnL-Komplexe (bzw. deren THF-Addukte) aufgenommen und mit den bereits bekannten von (COT)Ln(HBpz_3) oder (COT)Ln[HB(3,5-Me_2pz)_3] (Ln = Pr, Nd, Sm) [18–20] verglichen werden.

Die Absorptionsspektren von (COT)Ln(L)(THF) $(L^{-} = [(C_6H_5)_2P(NSiMe_3)_2]^{-}$ und $[(C_6H_5)C(NSi Me_{3}_{2}^{-}$ unterscheiden sich deutlich von denen der oben genannten Referenzverbindungen, während die von (COT)Ln(I)(THF)₃ nahezu identisch sind. Selbst im sog. hypersensitiven Bereich, der üblicherweise extrem empfindlich auf Änderungen der Koordinationssphäre reagiert [26], sind in den Absorptionsspektren $(COT)Nd[HB(3,5-Me_2pz)_3]$ von und (COT)Nd-(I)(THF)₃ sowohl bei den Bandenlagen als auch bei den relativen Intensitäten der Signale nur geringfügige Unterschiede festzustellen (vgl. Abb. 1). Offenbar bewirkt die Gesamtheit der drei (im Falle der Nd-Verbindung) durchschnittlich 257.2 pm vom

Abb. 1. Vergleich der Tieftemperatur-Absorptionsspektren von: (a) (COT)Nd(I)(THF)₃, (b) (COT)Nd[HB(3,5-Me₂pz)₃].

Abb. 2. Molekülstrukturen von: (a) (COT)Sm[HB(3,5-Me₂)₃] [25], (b) (COT)Nd(I)(THF)₃ [24], (c) (COT)Th(Cl)₂(THF)₂ (α-Form) [28].

Tabelle 1

Vergleich des berechneten und des angepaßten KF-Aufspaltungsmusters von $Pa(COT)_2$ sowie das auf Experimenten basierende relativistische MO-Schema von $[Pr(COT)]^+$

Pa(COT) ₂			Pa(COT) ₂			[Pr(COT)] ⁺	
Dominantes $M_{\rm J}$	Ber. Energie ^a	Angep. Energie	Dominantes $M_{\rm J}$	Ber. Energie ^b	Angep. Energie	Dominantes $M_{\rm J}$	Ber. Energie ^c
±5/2	0	0	$\pm 5/2$	0	0	$\pm 1/2$	0
$\pm 1/2$	1327	1371	$\pm 1/2$	102	8	$\pm 5/2$	163
$\pm 7/2$	2781	2807	$\pm 3/2$	4098	4002	$\pm 3/2$	829
$\pm 3/2$	3696	3720	$\pm 7/2$	4398	4247	$\pm 1/2$	2593
$\pm 1/2$	4460	4398	$\pm 1/2$	5193	5375	$\pm 7/2$	2664
$\pm 3/2$	9588	9513	$\pm 3/2$	11311	11293	$\pm 3/2$	3199
$\pm 5/2$	11120	11190	$\pm 5/2$	13565	13589	$\pm 5/2$	3691

Alle Werte in cm^{-1} .

^a Lit. [8] entnommen.

^b Lit. [12] entnommen.

^c Siehe Text.

Zentralion entfernten THF-Sauerstoffe und des 328.7 pm entfernten I--Ions [24] (s. Abb. 2b) eine ähnlich geringe Ligandenfeldstärke wie die durchschnittlich (bei der Sm-Verbindung) 248.0 pm entfernten N-Atome der $[HBpz_3]^-$ -Gruppe [25]. Demnach sind die bei (COT)LnL-Verbindungen (Ln = Pr,Nd; $L^{-} =$ [HBpz₃]⁻, [HB(Me₂pz)₃]⁻) abgeleiteten KF-Parameter [18-20] im wesentlichen auch für die entsprechenden (COT)Ln(I)(THF)₃-Komplexe repräsentativ. Während im Falle des Verbindungspaares (COT)Ln^{III}(HBpz)₃/ (COT)U^{IV}(HBpz₃)₂ der U^{IV}-Komplex noch nicht bekannt ist, wurde der Kombination bei (COT)Ln^{III}(I)(THF)₃/(COT)U^{IV}(I)₂(THF)₂ auch die letztere Verbindung vor einigen Jahren beschrieben [27]. Ergebnisse einer Röntgenstrukturanalyse dieses Komplexes liegen zwar noch nicht vor, jedoch dürfte dessen Molekülstruktur eng mit der von (COT)Th(Cl)₂(THF)₂ [28] verwandt sein.

Um zu prüfen, ob die I- und THF-Liganden nicht nur bei $[Ln(COT)]^+$ sondern auch bei $[U(COT)]^{2+}$ nur eine geringfügige Störung des vom COT-Ring hervorgerufenen KF der Symmetrie C8v bewirken, haben wir das Absorptionsspektrum von (COT)U(I)₂(THF)₂ bei ca. 100 K und ca. 10 K aufgenommen. Ein Vergleich beider Spektren zeigt, daß im 100 K-Spektrum einige 'heiße' Banden auftreten, die ca. 97 cm⁻¹ von den entsprechenden 'kalten' separiert sind. Offenbar wird der mutmaßliche zweifach entartete KF-Grundzustand (mit $M_1 = \pm 3$) von $[U(COT)]^{2+}$ [3,4,14,18], durch die Symmetrieerniedrigungseffekte der I-- und THF-Liganden im realen 5f²-System (COT)U(I)₂- $(THF)_2$ um ca. 97 cm⁻¹ aufgespalten. Bei den 4f²-Systemen [(COT)Pr(I)(THF)₃, (COT)Pr[HB(3,5-Me₂pz)]₃ bzw. (COT)Pr[HBpz₃], bei denen die Symmetriestörung als gering betrachtet werden kann, wurden 75, 43 bzw. 30 cm^{-1} gefunden [18,20].

Beim Übergang von einer Pr^{III}-zu der entsprechenden

U^{IV}-Verbindung vergrößert sich die Ligandenfeldstärke häufig um knapp das Dreifache [17]. Demnach bestehen berechtigte Aussichten, daß der mit Faktoren zwischen 2.7 und 3 multiplizierte KF-Parametersatz von [Pr(COT)]⁺ (vgl. Tabelle 2) [17] das KF-Aufspaltungsmuster von [U(COT)]²⁺ in erster Näherung beschreibt. Für eine später geplante KF-Analyse des Absorptionsspektrums von (COT)U(I)₂(THF)₂ dürften demnach B_0^4 -Werte zwischen –10100 und –11200 cm⁻¹ (neben kleineren negativen B_0^2 - und B_0^6 -Werten in der Gegend von + 750 cm⁻¹) realistische Startparameter darstellen.

3.2. Anpassung der berechneten relativistischen KF-Aufspaltungsmuster von Pa(COT)₂

Der auf experimentellen Befunden beruhende KF-Parametersatz von $[Pr(COT)]^+$ zeichnet sich vor allem durch einen dominanten negativen KF-Parameter B_0^4 aus [17]. Dies ist im Widerspruch zu der früheren ad hoc-Annahme, daß die KF-Aufspaltungseffekte von U(COT)₂ bevorzugt durch den positiven Parameter B_0^2 beschrieben werden [29].

Um sowohl unseren auf Experimenten beruhenden KF-Parametersatz von $[Pr(COT)]^+$ als auch den oben angegebenen Schätzwert für von $[U(COT)]^{2+}$ anderweitig zu belegen, paßten wir die beiden kürzlich mitgeteilten berechneten KF-Aufspaltungsmuster von Pa(COT)₂ [8,12] auf der Grundlage der phänomenologischen KF-Theorie [30,31] an (vgl. Tabelle 1). Die dabei verwendeten 'optimalen' Parametersätze sind in Tabelle 2 angegeben. Zu Vergleichszwecken ist in der Tabelle 1 auch das auf Experimenten beruhende relativistische MO-Schema von [Pr(COT)]⁺ angeführt. Dies wurde dadurch erhalten, daß die Eigenwerte der Energiematrix des spinbehafteten f¹-Systems bestimmt wurden, in die neben dem Spin-Bahn-Kopplungs- auch

Tabelle 2 Vergleich der angepaßten KF-Parameter von [Pr(COT)]⁺ und Pa(COT)₂

KF-Parameter	[Pr(COT)] ^{+a}	Pa(COT) ₂ ^b	Pa(COT) ₂ ^c
B_0^2	-21	+3160	+1641
B_0^4	-3732	-23584	-28747
B_{0}^{6}	+254	+5829	+4739
ζ	748	891	1393

Alle Werte in cm⁻¹.

^a Lit. [17] entnommen.

^b Anpassung des in Lit. [8] angegebenen KF-Aufspaltungsmusters. ^c Anpassung des in Lit. [12] angegebenen KF-Aufspaltungsmusters.

die KF-Parameter von [Pr(COT)]⁺ (vgl. Tabelle 2) [17] eingesetzt worden waren.

4. Diskussion

Die Anpassungen der von Chang et al. [8] bzw. Kaltsoyannis und Bursten [12] berechneten KF-Aufspaltungsmuster von Pa(COT)₂ führen zu Spin-Bahn-Kopplungsparametern (ζ_{5f}) von 891cm⁻¹ bzw. 1394 cm⁻¹ (vgl. Tabelle 2). Angesichts des bei PaCl₄ gefundenen ζ_{5f} -Wertes von 1526 cm⁻¹ [32] erscheint das hier resultierende $\zeta_{5f} = 891$ cm⁻¹ doch etwas niedrig, während $\zeta_{5f} = 1394$ cm⁻¹ sich in einem durchaus realistischen Rahmen bewegt.

Entgegen der früheren ad hoc-Annahme [29] führen die Anpassungen der beiden berechneten KF-Aufspaltungsmuster von Pa(COT)₂—ähnlich wie bei (COT)Pr[HB(3,5-Me₂pz)₃]—zu einem dominanten negativen KF-Parameter B_0^4 (vgl. Tabelle 2).

Nimmt man in erster Näherung an, daß die KF-Parameter des Vollsandwich-Komplexes An(COT)2 doppelt so groß sind wie die von $[An(COT)]^{2+}$ und geht man davon aus, daß sich die KF-Parameter von [Pa(COT)]²⁺ und $[U(COT)]^{2+}$ nicht gravierend unterscheiden [3], dann sollte gemäß den Modellrechnungen das KF-Aufspaltungsmuster von $[U(COT)]^{2+}$ durch B_0^4 -Werte von -11800 oder -14400 cm⁻¹ grob beschrieben werden. Dieses Ergebnis ist gut mit den oben angegebenen Grenzen von B_0^4 vereinbar (-10100 bis - 11200 cm⁻¹), die beim Gang von $(COT)Pr(I)(THF)_3$ zu (COT)U(I)₂(THF)₂ postuliert wurden.

Anerkennung

Die Autoren danken Herrn Dr. M. Ephritikhine für die Überlassung von (COT)U(I)₂(THF)₂ und dem Fonds der Chemischen Industrie für Sachbeihilfen. F.T.E. dankt zusätzlich der Deutschen Forschungsgemeinschaft für finanzielle Unterstützung sowie der BASF AG, Ludwigshafen für eine großzügige Spende von Cyclooctatetraen.

Bibliographie

- A. Streitwieser Jr., U.T. Müller-Westerhoff, J. Am. Chem. Soc. 90 (1968) 7364.
- [2] R.D. Fischer, Theo. Chim. Acta 1 (1963) 418.
- [3] P.M. Boerrigter, E.J. Baerends, J.G. Snijders, Chem. Phys. 122 (1988) 357, und dort angegebene Literaturzitate.
- [4] A. Chang, R.M. Pitzer, J. Am. Chem. Soc. 111 (1989) 2500.
- [5] C.-S. Neumann, P. Fulde, Z. Phys. B74 (1989) 277.
- [6] M. Pepper, B.E. Bursten, Chem. Rev. 91 (1991) 719, und dort angegebene Literaturzitate.
- [7] M. Dolg, P. Fulde, W. Küchle, C.-S. Neumann, H. Stoll, J. Chem. Phys. 94 (1991) 3011.
- [8] A. Chang, K. Zhao, W.C. Ermler, R.M. Pitzer, J. Alloys Comp. 213 (1994) 191.
- [9] K. Balasubramanian, in: K.A. Gschneidner, Jr., L. Eyring (Hrsg.), Handbook on the Physics and Chemistry of Rare Earths, Band 18, Kap. 119, Elsevier, Amsterdam, 1994, S. 29, und dort angegebene Literaturzitate.
- [10] M. Dolg, P. Fulde, H. Stoll, H. Preuss, A. Chang, R.M. Pitzer, Chem, Phys. 195 (1995) 71.
- [11] M. Dolg and H. Stoll, in: K.A. Gschneidner, Jr., L. Eyring (Hrsg.), Handbook on the Physics and Chemistry of Rare Earths, Band 22, Kap. 152, Elsevier, Amsterdam, 1996, S. 607, und dort angegebene Literaturzitate.
- [12] N. Kaltsoyannis, B. Bursten, J. Organomet. Chem. 528 (1997) 19.
- [13] M. Dolg, Encyclop. Comp. Chem., im Druck.
- [14] W. Liu, M. Dolg, P. Fulde, J. Chem. Phys. 107 (1997) 3584.
- [15] W. Liu, M. Dolg, P. Fulde, Inorg. Chem. 37 (1998) 1067.
- [16] K.D. Warren, Struct. Bonding 33 (1976) 97, und dort angegebene Literaturzitate.
- [17] H.-D. Amberger, F.T. Edelmann, J. Organomet. Chem. 508 (1996) 275.
- [18] H.-D. Amberger, S. Jank, H. Reddmann, F.T. Edelmann, Mol. Phys. 88 (1996) 1439.
- [19] B. Unrecht, S. Jank, H. Reddmann, H.-D. Amberger, F.T. Edelmann, N.M. Edelstein, J. Alloys Comp. 250 (1998) 383.
- [20] S. Jank, Dissertation, Hamburg, 1998.
- [21] M.V. Stainer, J. Takats, Inorg. Chem. 21 (1982) 4050.
- [22] U. Kilimann, F.T. Edelmann, J. Organomet. Chem. 444 (1993) C15.
- [23] U. Kilimann, F.T. Edelmann, J. Organomet. Chem. 469 (1994) C5.
- [24] U. Kilimann, F.T. Edelmann, J. Organomet. Chem. 469 (1994) C10.
- [25] U. Kilimann, Dissertation, Göttingen, 1994.
- [26] C.K. Jørgensen, B.R. Judd, Mol. Phys. 8 (1964) 281.
- [27] J.-C. Berthet, J.-D. LeMaréchal, M. Ephritikhine, J. Organomet. Chem. 393 (1990) C47.
- [28] A. Zalkin, D.H. Templeton, C. Le Vanda, A. Streitwieser, Inorg. Chem. 19 (1980) 2560.
- [29] W.D. Luke, A. Streitwieser, Jr., in: N.M. Edelstein (Hrsg.) Lanthanide and Actinide Chemistry and Spectroscopy, ACS Symposium Series 131, Washinton D.C., 1980, S. 93, und dort angegebene Literaturzitate.
- [30] D. Garcia, M. Faucher, in: K.-A. Gschneidner, Jr., L. Eyring (Hrsg.), Handbook on the Physics and Chemistry of Rare Earths, Band 21, Kap. 144, Elsevier, Amsterdam, 1995, S. 263, und dort angegebene Literaturzitate.
- [31] C. Görller-Walrand, K. Binnemans, in: K.A. Gschneidner, Jr., L. Eyring (Hrsg.), Handbook on the Physics and Chemistry of Rare Earths, Band 22, Kap. 155, Elsevier, Amsterdam, 1996, S. 121 und dort angegebene Literaturzitate.
- [32] H.-D. Amberger, W. Grape, E. Stumpp, Spectrochim. Acta 38A (1982) 1095.